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Abstract

The contribution of this paper is two-fold; first, we present a novel ap-
proach for sampling and reconstructing two dimensional signals with para-
metric structure or namely signals with Finite Rate of Innovation (FRI).
The considered signals are bi-level polygons and set of 2-D Diracs and it
will be shown that with the use of ACMP method, projection-slice theorem,
Radon projections and exponential splines as sampling kernels, such signals
can be perfectly reconstructed. Then, we present a possible extension of
the theory of sampling multidimensional FRI signals, discussed above, to
the case of multichannel acquisition systems. The essential issue of our con-
sidered multichannel system is that each channel receives the input signal
with an unknown geometric transformation which needs to be estimated.
We pose both the synchronization stage and the signal reconstruction stage
as a parametric estimation problem and demonstrate that a simultaneous
exact synchronization of the channels and reconstruction of the FRI signal
is possible.
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1 Introduction

Sampling is the process in which a continuous-time signal g(x) is represented by
a discrete set of values or samples g[n], where n ∈ Z. The fundamental questions
of interest for such a process are, 1) Under what conditions signal g(x) is perfectly
and uniquely recovered from the set of samples g[n] and 2) What are the methods
of reconstruction? The classical answer to these key questions was given by
Shannon in his well-known sampling theorem, which states that any bandlimited
continuous-time signal g(x) can be sampled and perfectly reconstructed if the

∗This work was in part presented at ICASSP09 [2] and SAMPTA09 [1].
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sampling rate is chosen to be equal or greater than twice the maximum non-
zero frequency of the signal. The reconstruction of the original signal from its
samples is then obtained using a sinc interpolation function. This extremely
fruitful result however, has two major drawbacks. First, real world signals are
never exactly bandlimited and second, an ideal sinc interpolation function is
physically not implementable. Thus, different approximations need to be taken
into account for such a sampling scheme to work in practice. These limitations
have led researchers to re-examine some of the core ideas of Shannon’s theory
and take it further into more advanced sampling techniques.

Figure 1: Sampling set-up. Here, g(x) is the continuous-time signal, h(x) the
impulse response of the acquisition device and T the sampling period. The
measured samples are sn = ⟨g(x), ϕ(x/T − n)⟩.

Recently in [7, 6, 26], it has been shown that it is possible to sample and
perfectly reconstruct some classes of non-bandlimited signals. In these schemes,
the prior that the signal is sparse in a basis or in a parametric space is taken
into account and perfect reconstruction is achieved based on a set of suitable
measurements. Depending on the set-up used and reconstruction method in-
volved, these sampling methods go under different names such as compressed
sensing (CS), compressive sampling [7, 6] or sampling signals with finite rate of
innovation (FRI) [26, 8]. Signals that can be sampled with the latter framework,
shown in Figure 1, include streams of Diracs, piecewise-polynomial [26, 8] and
piecewise-sinusoidal signals [5]. The reconstruction of these FRI signals is based
on the annihilating filter method (also known as Prony’s method [22]) and the
reader can refer to Appendix A for a brief overview of the method.

Most of these sampling schemes focus on a single-channel acquisition model,
however, modern and fast Analogue-to-Digital Converters (ADC) and majority
of sensor networks use interleaved multichannel converters which allow a reduc-
tion in the complexity of the devices while keeping higher rates of conversion.
Given the practical importance of multichannel acquisition devices, it is nat-
ural to investigate extensions of sparse sampling theories to the multichannel
scenario. The critical issue in multichannel sampling, shown in Figure 2, is the
precise synchronization of the various channels, since different devices introduce
different drifts and different gains (due to imperfections of electronic circuits
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Figure 2: Multichannel sampling set-up. Here, the continuous-time signal g(x) is
received by multiple channels with multiple acquisition devices. The samples yi,n
for i = 1, 2, . . . ,M , from each channel are utilized jointly for the reconstruction
process. The parameters ∆i and Ai for i = 2, 3, . . . ,M represent the different
delay and gain parameters introduced within the channels.

for example) that need to be estimated together with the signal itself. In this
paper we will be considering the multichannel sampling of multidimensional FRI
signals and extend the results in [26, 8] to this new scenario.

The paper is organized as follows: In the next section, we will briefly present
the sampling setup required for sampling 2-D FRI signals and also discuss the
properties of the sampling kernels involved. In Section 3 we will introduce our
algorithms for sampling set of 2-D Diracs and bi-level polygons and in Section 4
we will describe our method for sampling such signals in a multichannel frame-
work. We finally conclude in Section 5.

2 Sampling Setup for Multidimensional Parametric
Signals

The problem of sampling two dimensional signals is more involved and does not
allow direct extension of the 1-D results (see Section 3.1). Recently, extensions
to the multidimensional case were considered by Maravic et al. [18] and Shukla
et al. [21]. Maravic et al. considered 2-D FRI signals, such as 2-D set of
Diracs and bi-level polygons and used the sinc and Gaussian sampling kernels.
Shukla et al. proposed algorithms, from the theory of complex moments, for
sampling the same 2-D signals but with the use of B-splines as the sampling
kernel. The sinc and the Gaussian sampling kernels have infinite support and are
not physically realizable and also such kernels make the reconstruction algorithm
unstable. In this paper we will be considering exponential reproducing kernels
and in particular exponential splines [23], since they benefit from having compact
support and from being practically implementable (RC circuits for example). E-
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splines also tend to be more stable than other kernels.
Figure 3 shows the sampling setup used for sampling 2-D FRI signals. From

the setup shown, the samples sj,k are given by:

sj,k =

∫ ∞

−∞

∫ ∞

−∞
g(x, y) ϕ(

x

Tx
− j,

y

Ty
− k) dx dy, (1)

where the kernel ϕ(x, y) is the time reversed version of the filter response and
is assumed to be given by the tensor product of two 1-D functions, that is
ϕ(x, y) = ϕ(x)ϕ(y).

Figure 3: 2-D sampling setup. Here, g(x, y) represents the input FRI signal,
ϕ(x, y) the sampling kernel, gs(x, y) the sampled version of the input signal
g(x, y), sj,k the samples and Tx, Ty are the sampling intervals along the hori-
zontal and vertical directions respectively.

As mentioned before, in this paper we will focus on a specific class of kernels
that are able to reproduce real or complex exponentials. A kernel ϕ(x, y) is
able to reproduce exponentials up to order M and N along the x and y axes
respectively, if there exists coefficients cm,n

j,k ∈ C such that:∑
j∈Z

∑
k∈Z

cm,n
j,k ϕ(x− j, y − k) = eαmxeβny, αm, βn ∈ C, (2)

where m = 0, 1, . . . ,M and n = 0, 1, . . . , N . The coefficients cm,n
j,k can be found

numerically and the choice of the exponents is restricted to αm = α0+mλ1 and
βn = β0+nλ2. This is done to allow the use of specific reconstruction techniques
which are described later on.

Exponential splines (E-splines) [23] are central to the exponential reproduc-
tion theory and a function β

α⃗,β⃗
(x, y) with Fourier transform:

β̂
α⃗,β⃗

(ω1, ω2) =

M∏
m=0

N∏
n=0

(
1− eαm−jω1

jω1 − αm

)(
1− eβn−jω2

jω2 − βn

)
,

is called an E-spline of order (M + 1) × (N + 1) where α⃗ = (α0, α1, . . . , αM )
and β⃗ = (β0, β1, . . . , βN ) can be real or complex. The resulting spline has
compact support and can reproduce any exponential in the subspace spanned
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by {eα0xeβ0y, eα1xeβ0y, . . . , eαMxeβNy}. In time-domain, the expression of a 1-D
E-spline of order one is given by:

g(x, y) =

{
βα0(x) = eα0x 0 ≤ x < 1

0 otherwise.
(3)

where the higher order E-splines are obtained by successive convolutions of lower
order ones ((M+1)-fold convolution).

As mentioned above, the two-dimensional E-spline kernel can be obtained
by the tensor product between two single-dimension splines. It is interesting to
point out that, since the exponential reproduction formula is preserved through
convolution [23], any composite function of the form ϕ(x)∗βα⃗M

(x) is also able to
reproduce exponentials. Another interesting result which can be obtained from
the above sampling setup is that, if we denote τm,n as follows

τm,n =
∑
j

∑
k

cm,n
j,k sj,k, (4)

then by expanding the samples sj,k and replacing the corresponding equations
(assuming Tx = Ty = 1 for simplicity), the exponential moments of the signal
g(x, y) are obtained, that is:

τm,n = ⟨g(x, y),
∑
j

∑
k

cm,n
j,k ϕ(x− j, y − k)⟩ (5)

= ⟨g(x, y), eαmxeβny⟩ (6)

=

∫ ∞

−∞

∫ ∞

−∞
g(x, y) eαmxeβny dx dy. (7)

In the case of purely imaginary exponentials, that is setting αm and βn to be
purely imaginary, τm,n correspond to the Fourier transform of g(x, y) evaluated
at (αm, βn), that is:

τm,n = G(αm, βn), (8)

where G(u, v) represents the Fourier transform of the signal g(x, y). Having
gone through the basics needed for sampling multidimensional FRI signals, we
will now propose our algorithms for sampling and perfectly reconstructing set
of 2-D Diracs and bi-level polygons using E-splines.

3 A Sampling Theorem for Multidimensional Para-
metric Signals

In this section we present our novel algorithms for sampling and perfectly re-
constructing 2-D set of Diracs and bi-level polygons using E-spline sampling
kernels.
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3.1 A Sampling Theorem for Set of 2-D Diracs

Let us assume that a set of 2-D Diracs is passed through the sampling setup
shown in Figure 3. Assuming that there are K Diracs in the signal, such a signal
can be represented as:

g(x, y) =

K∑
k=1

ak δ(x− xk, y − yk), (9)

where ak are the amplitudes and (xk, yk) are the horizontal and vertical coordi-
nates of the Diracs respectively. Since each Dirac has an amplitude and also a
horizontal and vertical location, the signal has 3K degrees of freedom. Now by
substituting Equation (9) in (4) and (7), we obtain:

τm,n =
∑
j

∑
k

cm,n
j,k sj,k (10)

=

∫ ∞

−∞

∫ ∞

−∞
g(x, y) eαmxeβny dx dy (11)

=
K∑
k=1

ak

∫ ∞

−∞

∫ ∞

−∞
δ(x− xk, y − yk) e

αmxeβny dx dy (12)

=
K∑
k=1

ak e
αmxkeβnyk . (13)

Therefore, given the samples sj,k we can obtain τm,n =
∑K

k=1 ak e
αmxkeβnyk

and the aim now is to estimate the parameters (ak, xk, yk) from τm,n. One might
suggest an extension of the annihilating filter method described in [26, 8] for 1-D
signals, to this scenario. This extension fails because the relation τm,n∗hm,n = 0,
where hm,n is the annihilating filter, has an infinite number of zeros over the
complex field and there exists no unique solution for such a problem.

Another way to tackle this problem is by setting the indices m and n to
zero one at time and applying the 1-D annihilating filter method on both sets
to find the values of xk and yk coordinates separately. There are two drawbacks
with this method: first, the estimated locations have to be paired and this is
a combinatorial problem which may not have a unique solution, namely two
different pairings may lead to the same samples sj,k and second, in the case of
having common coordinates between xk and yk, the annihilating filter method is
unable to find the multiple poles, because of having non-unique filter coefficients.

This is indeed a spectral estimation problem and among the earliest tech-
niques that addressed this problem was the matrix enhancement and matrix
pencil (MEMP) algorithm by Hua [13]. For the case of common coordinates
problem, Hua solves the rank deficiency problem by introducing an enhanced
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matrix of the original data matrix. In this way, a partitioned and stacked Hankel
matrix of the original data matrix is constructed in a way such that the full-rank
property of the original matrix is restored. For the pairing problem, an unattrac-
tive combinatorial approach is suggested, trying all the possible combinations
to find the correct pairing and this is computationally expensive and therefore
not efficient. The ACMP (Algebraically Coupled Matrix Pencils) method by F.
Vanpoucke et al. [25] however, introduces a new technique to find the correct
pairings by simultaneously solving two algebraically related generalized eigen-
value equations. As the matrix enhancement approach in [13] is not compatible
with the algebraic pairing technique, an alternative rank restoration technique is
introduced. We will now briefly outline the ACMP algorithm, but more detailed
discussions can be found in [25].

3.1.1 Outline of the ACMP Method

Given αm = α0 + mλ1 and βn = β0 + nλ2, the obtained measurements τm,n,
which consists of a sum of K exponentials (complex or real) with unknown
coordinate pairs xk and yk, and amplitudes ak, can be rewritten as:

τm,n =
K∑
k=1

ak e
αmxk eβnyk =

K∑
k=1

âkφ
m
k ψn

k , (14)

where âk = ake
α0xkeβ0yk , φk = eλ1xk and ψk = eλ2yk . Let the K(K+1)×K(K+

1) enhanced matrix J be defined as:

J =


H(1,1) H(2,1) . . . H(K,1)

H(1,2) H(2,2) . . . H(K,2)

...
...

. . .
...

H(1,K) H(2,K) . . . H(K,K)

 .
where each block matrix H(l,k) of size K ×K is given by:

H(l,k) = τl:K+l,k:K+k. (15)

For the construction of matrix J , at least 2K × 2K data points are required.
This new enhanced matrix can be decomposed as follows:

J = X ′AY ′T , (16)

where

X ′ =
[
XT

K+1 ΨXT
K+1 Ψ2XT

K+1 . . . ΨK−1XT
K+1

]T
(17)

Y ′ =
[
Y T
K+1 ΦY T

K+1 Φ2Y T
K+1 . . . ΦK−1Y T

K+1

]T
. (18)
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Here, the matrices X ′ and Y ′ are both of sizes K(K + 1) × K. Furthermore,
Φ, Ψ and A are K × K diagonal matrices with parameters {φ1, φ2, . . . , φK},
{ψ1, ψ2, . . . , ψK} and {â1, â2, . . . , âK} along the diagonals respectively. The ma-
trices XK+1 and YK+1 are given by:

XK+1 =


1 1 . . . 1
φ1 φ2 . . . φK
...

...
. . .

...
φK
1 φK

2 . . . φK
K

 YK+1 =


1 1 . . . 1
ψ1 ψ2 . . . ψK
...

...
. . .

...
ψK
1 ψK

2 . . . ψK
K

 .
The matrices X ′ and Y ′ have a Vandermonde structure and when the matrix

J is at least of size K(K +1)×K(K +1), they are both full-rank . This matrix
enhancement technique restores the full-rank property of the original matrix
for the case of common coordinates problem. Now, due to the Vandermonde
structure of matrices Y ′ and X ′, the four sub-matrices Jtl, Jtr, Jbl and Jbr of
matrix J are constructed, which correspond to the omission of the first and last
rows and columns on each block of the matrix J :

Jtl = X ′AY ′T (19)

Jtr = X ′AY ′T = X ′AΨY ′T (20)

Jbl = X ′AY ′T = X ′ΦAY ′T (21)

Jbr = X ′AY ′T = X ′ΦAΨY ′T . (22)

Here, X ′ and X ′ indicate the omission of the first and last row of matrix X ′ re-
spectively. From the matrices described above we can obtain two matrix pencils
Jtr−µJtl and Jbl−λJtl. The ACMP method then operates as follows: First the
SVD of Jtl is computed as follows:

Jtl = UΣV H , (23)

where H is Hermitian operator. By multiplying UH to the left hand side and
multiplying V to the right hand side of the two matrix pencils defined above we
obtain:

UH(Jtr − µJtl)V = UHX ′AΨY ′TV − µUHX ′AY ′TV (24)

= FΨG− µFG (25)

= Ctr − µCtl, (26)

and,

UH(Jbl − λJtl)V = UHX ′AΦY ′TV − λUHX ′AY ′TV (27)

= FΦG− λFG (28)

= Cbl − λCtl, (29)
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where F = UHX ′A, G = Y ′TV , Ctr = UHJtrV = FΨG, Cbl = UHJblV = FΦG
and Ctl = UHJtlV = FG = Σ. By applying Eigen-Value-Decomposition (EVD)
on the new matrix pencils Ctr − µCtl and Cbl − λCtl, each of the poles φk and
ψk are obtained:

eig(C−1
tl Ctr) = eig(G−1F−1FΨG) = eig(G−1ΨG) = Ψ (30)

eig(C−1
tl Cbl) = eig(G−1F−1FΦG) = eig(G−1ΦG) = Φ. (31)

The identical transformation G on both equations guarantees that we have the
correct pairing for the estimated φk and ψk values. The steps below present a
pseudo code of the algorithm:

1. Construct the enhanced matrix J from the moments.

2. Construct the sub-matrices Jtl, Jtr and Jbl from the matrix J .

3. Compute the singular value decomposition (SVD) of the sub-matrix Jtl,
that is Jtl = UΣV H .

4. Generate the matrices Ctl, Cbl and Ctr with the following equations: Ctl =
Σ, Ctr = UHJtrV , Cbl = UHJblV .

5. Apply the Eigen-Value-Decomposition to C−1
tl Ctr and C−1

tl Cbl. This leads
to the unknown poles since: eig(C−1

tl Ctr) = Ψ and eig(C−1
tl Cbl) = Φ.

As the exact values of the poles φk and ψk are found using the above method,
the matrices X ′ and Y ′ can be constructed to obtain the parameters âk, using
the following equation:

A = (X ′†)J(Y ′T )†, (32)

where † stands for pseudo-inverse. From the estimated parameters âk and the
poles φk and ψk we can easily find the amplitudes ak and coordinates xk and yk
as follows:

xk =
ln(ϕk)

λ1
, yk =

ln(ψk)

λ2
, ak =

âk
eα0xkeβ0yk

. (33)

As mentioned above, for a set of K 2-D Diracs, at least 2K × 2K data
points are required for the construction of the enhanced matrix. This means
that the 2-D exponential spline order need to be at least (2K × 2K) in order
to reproduce the 2K exponential moments along both x and y axes. Regarding
the number of samples required, it was shown in [8] for 1-D signals that if there
are no more than K Diracs in an interval of size τ = 2KLT , L denoting the
support of the sampling kernel, then we are guaranteed that two groups of K
consecutive Diracs are sufficiently distant and that they are separated by some
zero samples. By locating these zeros, one can separate the two groups and
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apply the corresponding reconstruction method on each group independently.
Thus, the minimum number of samples required to perfectly reconstruct K 2-D
Diracs is N = 2KL along both Cartesian axes. We can now summarize the
above discussion with the following proposition:

Proposition I - A set of K 2-D Diracs is uniquely determined from the
samples sj,k = ⟨g(x, y), ϕ( x

Tx
− j, y

Ty
− k)⟩ with a minimum number of samples

N = 2KL along both the Cartesian axes x and y, provided that the sampling
kernel ϕ(x, y) with support L, can reproduce exponentials with an order 2K
along both the Cartesian axes.

Having presented a sampling theorem for set of 2-D Diracs, we now move on
to our next input signal, Bi-level Polygons.

3.2 A Sampling Theorem for Bi-level Polygons

Consider a non-intersecting, convex and bi-levelK-sided polygon with vertices at
points (xk, yk), k = 1, 2, . . . ,K. The described polygon can be uniquely specified
by its K vertices and therefore has degrees of freedom equal to 2K. Lee and
Mittra [15] derived a general formula for the Fourier transform of any K-sided
bi-level polygon where they showed that the Fourier transform is directly related
to the location of the polygon’s vertices (xk, yk):

G(u, v) =

K∑
k=1

ej(uxk+vyk)
pk−1 − pk

(u+ pk−1v)(u+ pkv)
. (34)

Here, pk represent the gradients of the polygonal lines. The reader can refer to
[15] for the derivation of this result. As τm,n are the exponential moments of
the input signal and given αm = α0 +mλ1 and βn = β0 + nλ2, we can deduce
the following:

τm,n = G(αm, βn) (35)

=

K∑
k=1

e(αmxk+βnyk)
pk−1 − pk

(αm + pk−1βn)(αm + pkβn)
(36)

=

K∑
k=1

ak,m,n e
αmxk eβnyk (37)

=

K∑
k=1

âk,m,nφ
m
k ψn

k , (38)

where ak,m,n =
pk−1−pk

(αm+pk−1βn)(αm+pkβn)
, âk,m,n = ak,m,ne

α0xkeβ0yk , φk = eλ1xk

and ψk = eλ2yk . The above equation closely follows the data model shown
in the ACMP method, however, since the result for the Fourier transform has
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a frequency-varying amplitude, the ACMP method cannot be applied to find
the locations (xk, yk). Having said that, by setting m and n indices to zero
separately, we will end up with two equations in power-sum series form, which
means that annihilating filter method can be used to retrieve the parameters
xk and yk separately. We already know that such a method has the problem of
finding the correct pairings between the xk and yk coordinates, however, with
the use of Radon transform and the projection-slice theorem [12] we can retrieve
the locations of the vertices of bi-level polygons from their moments. Projection-
slice theorem states that the Fourier transform function G(u, v) evaluated along
a line passing through the origin at an angle θ, is identical to the one dimensional
Fourier transform of the Radon projection Rg(t, θ). In mathematical form:

G(ω cos(θ), ω sin(θ)) = R̂g(ω, θ). (39)

In our set-up, θ = tan−1( n
m) with m and n being the indices of the moments

and ω =
√

(m2 + n2). With the help of this mapping, we can transform the
Fourier coefficients of bi-level polygons, obtained from E-spline sampling kernel
(see equation (4)), to the Radon domain as follows:

R̂g(ω, θ) = τωcos(θ), ωsin(θ) =
K∑
k=1

ak × eαωcos(θ)xk+βωsin(θ)yk × ω−2, (40)

where ak =
pk−1−pk

(cos(θ)+pk−1sin(θ))(cos(θ)+pksin(θ))
.

Let us introduce S(ω, θ) = τωcos(θ), ωsin(θ) × ω2 to present the new mapped
equation. The above equation can now be rewritten as:

S(ω, θ) =

K∑
k=1

ak × eαωcos(θ)xk+βωsin(θ)yk . (41)

At ω = 0, S(ω, θ) = 0 so the minimum required spline order can be decreased
by 1 as the first data sample is always zero. Since the angle θ is fixed for a given
projection, then the mapped equation at different projections has a power-sum
series form:

S(ω, θ) =
K∑
k=1

âke
ωzk =

K∑
k=1

aku
ω
k , (42)

where âk = ake
α0xkeβ0yk , zk = xkcos(θ)λ + yksin(θ)λ and uk = ezk . By using

annihilating filter method we can find all the parameters zk for each projection.
For example, by setting m = 0 and n = 0 we have the projections at θ = 0 and
θ = 90 degrees respectively, likewise if m = n then we have the projection at
45 degrees. Further angles can be obtained by choosing different patterns such
as m = 2n or n = 2m. Each projection, as explained above, will result in a
power-sum series form and annihilating filter method can be used to retrieve the
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(a) (b) (c)

Figure 4: (a) A 3-sided polygon in a frame size of 256x256 (b) The 32x32 samples
of the input signal (c) The reconstructed vertices with 3+1=4 back-projections,
the crosses are the actual vertices of the polygon. [Not to scale]

parameters zk which correspond to the sums of the vertices of the polygon in
different directions. By back-projecting the parameters zk according to their θ
we are able to retrieve some information about the polygon’s vertices. As any
K-sided convex and bi-level polygon is completely specified by the location of
its K vertices, it is known [17] that K + 1 projections will entirely specify the
vertices of the bi-level polygon, that is, points that have K+1 line intersections
from the back-projections correspond to the K vertices.

To reconstruct a set of K Diracs from its samples, we need at least 2K data
points, which means a minimum spline order of 2K is required. For bi-level
polygons however, as the first data sample is always zero, a minimum spline
order of 2K − 1 at each projection angle is required. Thus, the minimum spline
order required for a perfect reconstruction of a given K-sided bi-level polygon
is p.(2K − 1) where p is the number needed in order to produce at least K + 1
projections. The value of p can be found by inspection but it can be shown that
p is O(K), thus, the order of the spline is O(K2) along both directions. Figure 4
shows an example of the sampling process where the input signal, corresponding
samples and the reconstructed signal are shown. We can now summarize the
above discussion with the following proposition:

Proposition II - A K-sided bi-level polygon is perfectly reconstructed from
the samples sj,k = ⟨g(x, y), ϕ( x

Tx
−j, y

Ty
−k)⟩ with a minimum number of samples

N = 2KL along both the Cartesian axes x and y, provided that the sampling
kernel ϕ(x, y) with support L, can reproduce exponentials with an order p(2K−
1) along both directions, where p is the number required in order to produce at
least K + 1 projections.

The 2-D order of the spline required is O(K2)×O(K2) and this suggests that
as the complexity of the signal increases, a higher sampling rate will be required.
In the next section we show how this can be avoided by using a multichannel
acquisition system.
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Figure 5: A multichannel sampling setup for 2-D FRI signals. The bank of E-
spline filters φ1, φ2, . . . , φM receive different geometrically transformed versions
of the original signal g(x, y). Here, the unknown transformation parameters are
denoted by T2, . . . , TM .

4 Multichannel Sampling of Parametric Signals

In this section we investigate the scenario of multichannel sampling of 2-D para-
metric signals. Multichannel sampling was first proposed by Papoulis in the
context of bandlimited signals [19] and extended by Unser et al. [24] for sig-
nals lying in shift-invariant subspaces. A further extension related to union of
shift-invariant subspaces has been recently considered in [9]. The multichannel
sampling of FRI signals has been considered in [14], [11], [20] and [4]. In [20]
Seelamantula and Unser, by using simple RC filters, propose a simple acquisi-
tion and reconstruction method within the framework of multichannel sampling,
where 1-D FRI signals such as an infinite stream of nonuniformly-spaced Dirac
impulses and piecewise-constant signals can be sampled and perfectly recon-
structed. In [14] Kusuma and Goyal proposed new ways of sampling 1-D Dirac
impulses using a bank of integrators or B-splines. Their proposed scheme is
closely related to previously known cases but provides a successive approxi-
mation property, which could be useful for detecting undermodelling when the
number of Dirac impulses are unknown. In [4] Baboulaz and Dragotti use a
multichannel sampling setup for sampling FRI signals and utilize that for image
registration based on continuous moments.

A model of the multichannel system accepting multidimensional signals is
shown in Figure 5 where the bank of E-spline filters φ1, φ2, . . . , φM receive dif-
ferent geometrically transformed versions of the original signal g(x, y). Here, the
unknown transformation parameters are denoted by T2, . . . , TM .

We have looked at the case of multichannel sampling of a stream 1-D Diracs
in [3] using exponential splines, with unknown gains and delays introduced
within the channel and illustrated that by synchronizing the different channels
of the proposed multichannel sampling setup, one can estimate the unknown
delays and gains, regardless of the input FRI signal. We will now consider the
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multichannel sampling of multidimensional signals. Let us first assume that our
input signal is a set of K 2-D Diracs and the geometric transformations in each
channel is restricted to 2-D translations (∆xi,∆yi), only. The signal g(x, y) is
acquired with a multichannel sampling system shown in Figure 5 with M chan-
nels. The sampling kernel in each channel is able to reproduce exponentials and
for simplicity we assume that each kernel is an E-spline of order P × Q. The
samples of the i-th channel, with i = 2, 3, . . . ,M , are given by:

sij,k = ⟨g(x−∆xi, y −∆yi), φ(
x

Tx
− j,

y

Ty
− k)⟩,

with (∆x1,∆y1) = (0, 0). Our goal is to have a reconstruction technique that
can perfectly retrieve the unknown translation parameters as well as the input
signal. For the sake of clarity, let us assume that M = 2 and that:

φ̂1(ω1, ω2) =

P∏
m=0

2Q−1∏
n=0

(
1− eαm−jω1

jω1 − αm

)(
1− eβn−jω2

jω2 − βn

)

φ̂2(ω1, ω2) =

2P−1∏
m=P

2Q−1∏
n=0

(
1− eαm−jω1

jω1 − αm

)(
1− eβn−jω2

jω2 − βn

)
.

We have set one parameter to be common between the exponents of E-spline in
one direction, specifically, both kernels can reproduce the exponentials eαP xeβny

for n = 0, 1, . . . , 2Q − 1. Using the samples, we can obtain the exponential
moments τ im,n for both channels as indicated in Equations 5−7. More precisely
we have:

τ1m,n =

∫ ∞

−∞

∫ ∞

−∞
g(x, y) eαmxeβnydx dy,

where m = 0, 1, . . . , P and n = 0, 1, . . . , 2Q− 1 and,

τ2m,n =

∫ ∞

−∞

∫ ∞

−∞
g(x−∆x2, y −∆y2) e

αmxeβnydx dy = τ1m,ne
αm∆x2eβn∆y2 ,

where m = P, P +1, . . . , 2P −1 and n = 0, 1, . . . , 2Q−1. Given the above equa-
tions, by taking logarithms we will obtain a system of simple linear equations
which we can solve for the translation parameters ∆x2 and ∆y2, that is:

(
∆x2
∆y2

)
=

(
αP β0
αP β1

)−1

ln(
τ2P,0

τ1P,0
)

ln(
τ2P,1

τ1P,1
)

 .

This reveals that, independently of g(x, y) it is possible to synchronize the two
channels exactly from the obtained measurements. Given the exact translation
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parameters, we can now estimate the exponential moments τ1m,n, with m =
P, P + 1, ..., 2P − 1 from τ2m,n as follows:

τ1m,n = τ2m,ne
−αm∆x2e−βn∆y2 ,

where m = P, P + 1, ..., 2P − 1 and n = 0, 1, . . . , 2Q− 1.
For the case of set of 2-D Diracs for example, it follows that P ≥ K so

that perfect recovery of the signal g(x, y) is possible from the moments τ1m,n for
m = 0, 1, . . . , 2P−1 and n = 0, 1, . . . , 2Q−1. The advantage of the set-up above
is that we now require splines of lower order, i.e. P ≥ K rather than P ≥ 2K−1,
and this leads to shorter kernels in one of the dimensions. This indicates that
we can either sample signals with a higher complexity or alternatively for the
same signal we can almost halve the sampling rate in one of the dimensions.
The extension to the case of M channels is also straightforward. By designing
each sampling kernel so that pairs of channels have one parameter in common
in one direction, it is possible to synchronize the channels and then reconstruct
g(x, y). This means that by using an M-channel system we can either sample
the same FRI signals with a reduced sampling rate proportional to ∼ 1/TM or
sample signals with a much higher complexity.

The above method can be applied to any 2-D FRI signals as long as the
transformation parameters are restricted to 2-D translations. However, one can
not estimate more complicated geometric transformations such as rotation and
scaling with exponential reproducing kernels. This is because introducing such
parameters would result in a non-linear relationship between the exponential
moments of the different signals and therefore our introduced method above
cannot be applied. This problem can be solved with the use of geometric mo-
ments [10, 16, 27] which can be obtained by a polynomial reproducing kernel
such as B-splines. Let us assume that the input signal is a K-sided bi-level poly-
gon with scaling, rotation and translation introduced within different channels.
It is known that the parameters of such transformations can be estimated from
the geometric moments up to order 3 from the two signals. Therefore, an al-
ternative sampling kernel is required which could reproduce polynomials for the
calculation of the transformation parameters, and exponentials for sampling and
perfectly reconstructing the input signal. E-splines support such feature as they
are a generalized version of B-splines [23], thus, a combination of polynomials
and exponentials from E-splines can be reproduced. The Fourier transform of
the corresponding generalized E-spline function will then be as follows:

β̂
α⃗,β⃗

(ω1, ω2) =

(
1− e−jω1

jω1

)3(
1− e−jω2

jω2

)3 M∏
m=0

N∏
n=0

(
1− eαm−jω1

jω1 − αm

)(
1− eβn−jω2

jω2 − βn

)
.(43)

The produced spline is of order (M + 4) × (N + 4), has compact support
and can reproduce polynomials up to order 3 along both directions and can
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reproduce any exponential up to order (M + 1) × (N + 1). Now that the un-
known parameters are estimated from the generalized sampling kernel, we can
synchronize the channels in our multichannel set-up and perfectly retrieve the
bi-level polygon signal as follows: It was already shown in this paper that with
K + 1 projections, a K-sided bi-level polygon can be sampled and perfectly re-
constructed. Moreover, it is known that Radon projection at angle ϕ of an image
rotated with an angle θ with respect to its reference image, is equivalent of the
reference image at the angle ϕ + θ. Therefore, the K + 1 projections required
to perfectly reconstruct the input bi-level polygon could be obtained from the
different channels and this leads to shorter kernels and thus less samples will be
required from each channel.

The steps given below shows the procedures required to sample bi-level poly-
gons in the proposed multichannel framework, with scaling, rotation and trans-
lation introduced within different channels. For the sake of clarity, we have
assumed M = 2:

1. Choose the sampling kernel on both channels to be of order N1 + 3 and
N2 + 3 respectively. Here, the number 3 corresponds to the spline order
which is required for estimating the transformation parameters and the
numbers N1 and N2 correspond to the 2-D spline order required to produce
at least P and Q projections respectively, with P +Q ≥ K + 1.

2. Estimate the transformation parameters between the two channels from
their corresponding geometric moments.

3. Obtain the P projections at the angles ϕ1, ϕ2, . . . , ϕP from the first channel
and back-project them, as described in Section 3.

4. Obtain the Q projections at the angles ψ1, ψ2, . . . , ψQ from the second
channel.

5. Un-do the already estimated scaling and translations parameters on the
projections from the second channel and obtain the projections of the input
signal at the angles θ + ψ1, θ + ψ2, . . . , θ + ψQ where θ is the estimated
rotation parameter.

6. Back-project the projections in 3 and 5 to achieve perfect reconstruction
of the input bi-level polygon.

As an example, in order to achieve perfect reconstruction for a 4-sided bilevel
polygon, a 2-D E-spline order of 14 along both directions is required to produce
5 projections at the angles 0, 45, 90, tan−1(2) and tan−1(12). With 2-D E-spline
order of 8 however we can produce 3 projections at the angles 0, 45, 90 on the
reference signal, and a 2-D E-spline order of 8 on the second signal would give
3 projections for the reference signal at the angles θ, 45 + θ, 90 + θ. Assuming
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(a) (b) (c)

(d) (e) (f)

Figure 6: Multichannel sampling of bi-level polygons using E-spline sampling
kernels. (a) The reference signal in a frame data size of 256 × 256. (b) The
translated (△x = −100,△y = 150), rotated (θ = 35) and scaled (a = 1.1)
version of the reference signal. (c) 2-D generalized E-spline of order 11. (e) &
(d) The 16 × 16 samples of both signals. (f) The reconstructed vertices of the
reference signal with 6 back-projections, the crosses are the actual vertices of
the polygon. [Not to scale].
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θ is not zero, with an spline order of 8 + 3 = 11 on each channel we have
enough projections to perfectly reconstruct the input signal. Figure 6 shows
an example where the input signal, its translated, rotated and scaled version,
their corresponding samples, the E-spline sampling kernel, and the reconstructed
input signal are all shown.

5 Conclusion

In this paper we showed that with the use of ACMP method, projection-slice
theorem and Radon projections, multidimensional parametric signals such as set
of 2-D Diracs and bi-level polygons can be sampled and perfectly reconstructed
using exponential splines as the sampling kernel. For the case of multichannel
sampling scenario, assuming that the geometric transformations are restricted to
2-D translations only, we showed that the different channels can be synchronized
regardless of the input FRI signal. For the case of more complicated transforms
such as scaling and rotation, we illustrated that with the use of Radon projec-
tions, one can separate the projections needed between the different channels,
to perfectly retrieve the input signal in the multichannel set-up.
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6 Appendix A: Annihilating Filter Method

In this Appendix we provide a brief review of the annihilating filter method.
Consider a power-sum series in the form:

τm =

K∑
k=1

ak u
m
k , m = 1, 2, . . . ,M. (44)

Our aim is to retrieve the set of unknown parameters uk and ak from the mea-
surements τm. Let us define a filter hm with m = 0, 1, . . . ,K, such that the
locations uk are the roots of the filter. The z-transform of such a filter is:

H(z) =

K∑
m=0

hmz
−m =

K∏
k=1

(1− ukz
−1). (45)

The signal τm convolved with the filter defined above, results in:

hm ∗ τm =

K∑
i=0

hi τm−i

=

K∑
i=0

K∑
k=1

ak hi u
m−i
k

=

K∑
k=1

ak u
m
k

K∑
i=0

hi u
−i
k︸ ︷︷ ︸

=0

= 0,

The under-braced term in the set of equations above equals to zero, as H(uk) =
0, thus:

hm ∗ τm = 0. (46)

The filter H(z) is called the annihilating filter as it annihilates the signal τm.
The zeros of such a filter uniquely define the distinct locations uk. Moreover,
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the convolution equation can be written in the matrix form as follows:
τK τK−1 · · · τ0
τK+1 τK · · · τ1
...

...
. . .

...
τN τN−1 · · · τN−K

×


h(0)
h(1)
...

h(K)

 = 0,

where N ≥ 2K − 1 as at least 2K consecutive values of τm are required in order
to solve the matrix equation shown above. Since h(0) = 1, the above system
can be written as follows:

τK−1 τK−2 · · · τ0
τK τK−1 · · · τ1
...

...
. . .

...
τN−1 τN−2 · · · τN−K

×


h(1)
h(2)
...

h(K)

 = −


τK
τK+1
...
τN

 ,
where by taking the inverse of the first matrix we can solve for the coefficients
hm. Given the filter coefficients, the parameters uk are found by taking the roots
of the filter. The system of equations above gives a unique solution for uk since
the filter coefficients hm are unique for a given signal (if there are multiple poles,
for example uk−1 = uk, then the most-left matrix above will be rank deficient
and the filter coefficients hm will not be unique). After finding the locations uk,
we are able to find the weights ak from the power-sum series formula given in
equation (44). By expanding the equation and writing it in the matrix form, we
obtain: 

1 1 · · · 1
u1 u2 · · · uK
u21 u22 · · · u2K
...

...
. . .

...

uK−1
1 uK−1

2 · · · uK−1
K

×


a1
a2
...
aK

 =


τ0
τ1
...

τK−1

 .
The above system of equations is a Vandermonde system and leads to a unique
solution for the amplitudes ak since the uk are distinct.


